
www.elsevier.com/locate/jmicmeth
Journal of Microbiological Methods
An ecoinformatics tool for microbial community studies:

Supervised classification of Amplicon Length

Heterogeneity (ALH) profiles of 16S rRNA

Chengyong Yang a, DeEtta Mills b, Kalai Mathee b, Yong Wang a, Krish Jayachandran c,

Masoumeh Sikaroodi d, Patrick Gillevet d, Jim Entry e, Giri Narasimhan a,*

aBioinformatics Research Group (BioRG), School of Computer Science, Florida International University, Miami, Florida, 33199, USA
bDepartment of Biological Sciences, Florida International University, Miami, Florida, USA

cDepartment of Environmental Sciences, Florida International University, Miami, Florida, USA
dMicrobial and Environmental Biocomplexity, Department of Environmental Sciences and Policy, George Mason University,

Manassas, Virginia, USA
eUSDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, Kimberly, Idaho, USA

Received 18 January 2005; received in revised form 22 April 2005; accepted 24 June 2005

Available online 27 July 2005
Abstract

Support vector machines (SVM) and K-nearest neighbors (KNN) are two computational machine learning tools that

perform supervised classification. This paper presents a novel application of such supervised analytical tools for microbial

community profiling and to distinguish patterning among ecosystems. Amplicon length heterogeneity (ALH) profiles from

several hypervariable regions of 16S rRNA gene of eubacterial communities from Idaho agricultural soil samples and from

Chesapeake Bay marsh sediments were separately analyzed. The profiles from all available hypervariable regions were

concatenated to obtain a combined profile, which was then provided to the SVM and KNN classifiers. Each profile was

labeled with information about the location or time of its sampling. We hypothesized that after a learning phase using

feature vectors from labeled ALH profiles, both these classifiers would have the capacity to predict the labels of previously

unseen samples. The resulting classifiers were able to predict the labels of the Idaho soil samples with high accuracy. The

classifiers were less accurate for the classification of the Chesapeake Bay sediments suggesting greater similarity within the

Bay’s microbial community patterns in the sampled sites. The profiles obtained from the V1+V2 region were more

informative than that obtained from any other single region. However, combining them with profiles from the V1 region

(with or without the profiles from the V3 region) resulted in the most accurate classification of the samples. The addition
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of profiles from the V9 region appeared to confound the classifiers. Our results show that SVM and KNN classifiers can

be effectively applied to distinguish between eubacterial community patterns from different ecosystems based only on their

ALH profiles.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Ecoinformatics; Supervised classification; Machine learning; Amplicon length heterogeneity; Ecosystem community patterns;

Support vector machines
1. Introduction

Microbial communities that occur in both natural

and man-made environments can be complex, consist-

ing of a large number of bacterial, archaeal, and

fungal species. Thus, it is impractical to use culture-

based microbiological methods for species identifica-

tion. Understanding and analyzing at a whole-com-

munity level enables fast and efficient ways to provide

a glimpse into the patterned diversity of such com-

munities (Dunbar et al., 2002; Hill et al., 2002).

Molecular methods based on amplification of DNA

using polymerase chain reaction (PCR), cloning and

sequencing of highly conserved prokaryotic target

genes have played a central role in determining the

extent of diversity. The predominant choice for a

target gene has been the 16S small subunit ribosomal

RNA (rRNA) (Olsen et al., 1986; Pace et al., 1986),

resulting in the accumulation of extensive sequence

information (e.g., the Ribosome Database Project

(Maidak et al., 1999)).

Ribosomal RNA is essential for cellular growth,

function, and survival of all organisms. Consequent-

ly, ribosomes have highly conserved functional

domains that share high sequence identity. These

conserved regions are interspersed with hypervariable

sequence regions that are due to base substitutions, or

insertions or deletions of short segments of nucleo-

tides. These variations are phylogenetically relevant

as they are related to the genetic makeup of each

species (Ludwig and Schleifer, 1994). The natural

variations and composition of 16S rRNA have been

exploited in molecular assays such as terminal re-

striction fragment length polymorphism (TRFLP)

and amplicon length heterogeneity (ALH). These

assays depend on the amplification of the variable

regions of the 16S rRNA (or any other appropriate

gene) using sets of primers that are designed based

on the highly conserved regions. The portion of the
DNA sequence amplified by a pair of primers is

referred to as an amplicon. Given a sample consisting

of a community of microbes, PCR amplification

using a pair of primers will yield a profile of ampli-

con lengths associated with the microorganisms in

the sample, where the height (intensity) of the peak is

proportional to the abundance of the amplicons asso-

ciated with any given length (Dunbar et al., 2001;

Suzuki et al., 1998). Different pairs of primers can be

used to target different variable regions of the 16S

rRNA genes. We introduce the concept of a combined

profile, which is simply a concatenation of the nor-

malized ALH profiles obtained from using different

pairs of primers on the same sample (analogous to

multiple loci analysis). Thus, the ALH system pro-

files a community based on the patterns of lengths of

amplified products (amplicons) providing a rapid and

cost-effective way to distinguish among the commu-

nities without identifying individual species or

genera. Length heterogeneity has been used to esti-

mate bacterial diversity in a variety of ecosystems

(Bernhard et al., 2005; Bernhard and Field, 2000;

Litchfield and Gillevet, 2002; Mills et al., 2003;

Ritchie et al., 2000; Suzuki et al., 1998; Tiirola et

al., 2003).

Prior approaches to study soil microbial diversity

and community dynamics include computing mea-

sures such as species richness and dominance or

evenness indices (Hill et al., 2002). Theoretical mod-

els of microbial diversity based on the log-normal

distributions have been studied (Dunbar et al., 2002).

Clustering of soil samples using the UPGMA (un-

weighted pair-group method using arithmetic

averages) algorithm based on the use of distance

metrics (such as the Jaccards or Hellinger or Pearson

distances) on length heterogeneity data has also been

reported (Blackwood et al., 2003; Dunbar et al.,

2000; Griffiths et al., 2000). Such unsupervised meth-

ods have been used to support claims that certain
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relationships between communities can be discerned,

that the groupings are natural, and that outliers can be

identified.

In contrast to unsupervised methods, computational

tools based on supervised classification methods from

machine learning are not known to have been used for

studying microbial diversity. Two well-known super-

vised classification tools include: (a) Support Vector

Machines (SVM), and (b)K-Nearest Neighbor Method

(KNN). These tools have the ability to blearnQ to clas-

sify samples after being trained with a collection of

known, labeled feature vectors obtained from the

inputs. Both are computational machine-learning

tools that treat the data as points or vectors in Euclidean

space. These vectors are usually referred to as bfeature
vectorsQ because their coordinates correspond to quan-

tified bfeaturesQ of the data. These features are usually
obtained after a feature extraction process. Given a new

sample, it too is represented by a feature vector. In both

methods, classification of the new sample is based on

the location of its feature vector vis-à-vis the location of

the labeled feature vectors. For further details, the

reader is encouraged to consult the following refer-

ences (Cristianini and Shawe-Taylor, 2000; Hastie et

al., 2001; Michie et al., 1994; Noble, 2004). SVMs

have been shown to perform well in a variety of re-

search areas including pattern recognition (Burges,

1998), text categorization (Joachims, 1997), face rec-

ognition (Osuna et al., 1997), computer vision (Scholk-

opf et al., 1997), classifications based on microarray

gene expression data (Brown et al., 2000; Furey et al.,

2000; Lee and Lee, 2003; Sturn et al., 2002; Zheng et

al., 2003), detecting remote protein homologies (Vert,

2002), classifying G-Protein coupled receptors

(Karchin et al., 2002), predicting signal peptide cleav-

age site and predicting subcelluar localization predic-

tion (Hua and Sun, 2001; Lin et al., 2002), and many

more. In particular, SVMs are well suited for dealing

with high-dimensional data (Cristianini and Shawe-

Taylor, 2000; Noble, 2004). KNN classifiers have

been successfully used in applications such as classifi-

cation of handwritten digits and satellite image scenes

(Michie et al., 1994).

In this paper, computational machine learning clas-

sifiers based on SVMs and KNNs were used to identify

and compare different types of microbial communities.

After a blearningQ phase, the resulting classifiers were

able to classify with high accuracy (according to pre-
assigned labels): (1) a set of Idaho native sagebrush and

agricultural soil samples, and (2) a set of Chesapeake

Bay marsh sediments. Detailed studies using these

tools revealed the limitations of the data and the min-

imum amount of information from ALH assays that

were necessary to perform reliable classification in

such soil samples.
2. Materials and methods

2.1. Data sets

Supervised classifications were performed on a

collection of ALH combined profiles of eubacterial

communities from Idaho agricultural soil samples and

Chesapeake marsh sediment samples. The DNA

extracted from the samples was PCR amplified as

described previously (Mills et al., 2003) using four

sets of fluorescently labeled universal eubacterial pri-

mers for the Idaho samples and one set for the Che-

sapeake samples. The 16S rRNA gene primers for the

four hypervariable regions were as follows: for region

V1+V2, 6-FAM-27F and 355R (Suzuki et al., 1998);

for region V1, 6-FAM-P1F and P1R (Cocolin et al.,

2001); for region V3, HEX-338F and 518R (Cocolin

et al., 2001); for region V9, NED-1055F and

EC1392R (Cocolin et al., 2001).

2.1.1. Idaho soil samples

The soil samples from Idaho represented a (con-

trol) native sagebrush (NSB) soil and three different

soil management practices (conservation tillage (CT),

irrigated pasture (IP) and moldboard plowed (MP)).

The NSB and CT samples were collected from depths

between 0 and 5 cm, 5 and 15 cm and 15 and 30 cm.

Due to the land use and tillage practice, the IP and

MP soils tend to be homogeneous, and were therefore

only sampled from depths between 0 and 30 cm. All

samples were sieved and homogenized after collec-

tion. For each of the Idaho soil types, samples were

collected from two or three different locations within

each descriptive sample type. Finally, for each loca-

tion, samples were divided into triplicates and ALH

profiles were obtained on each individual replicate.

For each replicate, the V1, V1+V2, V3, and V9

hypervariable regions were PCR amplified and ana-

lyzed by the ALH method.
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The computational analyses were performed on

two different sets of samples. The first set, referred

to as Idaho-top, included soil samples from all NSB

and CT locations obtained from depths of 0 to 5 cm

(surface) and all IP and MP samples obtained from

depths of 0 to 30 cm. The second set, referred to as

Idaho-deep, included soil samples from all NSB and

CT locations obtained from a depth of 15 to 30 cm

(subsurface) and all IP and MP samples obtained from

depths of 0 to 30 cm. To use the machine learning

methods, feature vectors were extracted from the ALH

combined profiles. These vectors contained one com-

ponent for each possible length with the value of that

component equal to the relative abundance (i.e., the

intensity (amplitude) of each peak divided by the total

intensity of all peaks). If the ALH profile of a partic-

ular sample had a peak missing (i.e., contained no

amplicons of a specific length) when compared to

others, then the corresponding component of its fea-

ture vector was set to zero. The samples were labeled

according to the soil management practice used. The

classifiers were designed to predict the labels for

unknown samples.

2.1.2. Chesapeake Bay samples

Sediment samples from the barrier island fringe

marsh in the Chesapeake Bay were separately ana-

lyzed. One data set consisted of samples from nine

different locations within the coastal habitats (Chim-

ney Pole, Cattle Shed, Hog Island Dry, Hog Island

Intermediate, Hog Island Wet, Oyster Creek Bank,

Oyster Creek Marsh, Red Bank, and Upper Phillips

Creek), all collected at the same time of the year.

Another data set consisted of samples from the

Chesapeake Bay collected from a single location at

seven different time points over a 14-month period

(Sep 1999–Nov 2000). Two different classifiers

were designed, one to optimally predict the location

label of unknown test samples, and the other to

predict the time of the year when the samples

were collected.

As with the Idaho soil data, feature vectors were

extracted from the ALH profiles. The data from the

Chesapeake ALH profiles were only from the V1+V2

hypervariable region. As with the Idaho soil data

analysis, if a particular ALH profile had a peak miss-

ing when compared to others, then the corresponding

component of the feature vector was set to zero.
2.2. Supervised classification methods

The task of classification consisted of constructing a

method that could automatically blabelQ the sample

from combined ALH profile patterns. For every sam-

ple, this pattern was given as a vector of relative

abundance at different lengths. Given a set of training

examples, X ={xi :xi aaaa Rn}, with known labels,

Y={yi :yi aaaa {possible types}}, a discriminant function,

f :RnY {possible types}, where n is the number of

possible lengths, has to be learned. The number of

misclassifications of f on the training set {X,Y} is

minimized by the learning machine during the training

phase. The practical interest of these methods is their

capacity to predict the class of previously unseen

samples (test set), i.e., the so-called bgeneralizationQ
performance. The data samples in any given data set

were divided into a training set and a test set. This

was done so that no repeats from the same location or

sampling time were present in both the training and

the test set. Otherwise, the SVM classifier would have

been trained with a very similar training sample and it

would be easy to build highly reliable classifiers for

the test samples. Such a strategy for dividing input

samples into training and test sets is used in k-fold

cross validation techniques and is, therefore, statisti-

cally sound (Efron and Tibshirani, 1993), allowing us

to train and test on different samples without the need

for unknown environmental samples whose labels

may be uncertain.

The major problem of training a learning machine to

perform supervised classification is to find a function

that not only captures the essential properties of the

data distribution, but also avoids over-fitting the data.

The support vector machine (SVM) tries to construct a

(linear) discriminant function for the data points in

feature space in such a way that the feature vectors of

the training samples are separated into classes, while

simultaneouslymaximizing the distance of the discrim-

inant function from the nearest training set feature

vector. SVM classifiers also allow for non-linear dis-

criminant functions. This is achieved by mapping the

input vectors into a different feature space using a

mapping function,A :xiYA(xi), and using the vectors,

A(xi), xi a X, as the feature vectors. The corresponding

kernel function used by the SVM algorithm is

K(xi, xk)=bA(xi) d A(xk)N. Standard kernel functions

include: (a) the polynomial kernel function of degree
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d given by K(X,Y)= (Xd Y +1)d, which for d =1 is the

linear kernel function, (b) the radial basis function

(RBF) kernel with parameter c, given by

K(X,Y)=exp(�g||X-Y||2), and (c) the sigmoid kernel

given by K(X,Y)= tanh(g(Xd Y)+u). Default para-

meters for each kernel function were applied for the

learning and testing phase of the SVM classifier.

However, kernels with default parameters did not

perform well for some of the data analyzed here. In

such cases, model selection is recommended (Chang

and Lin, 2002), which requires performing a bgrid-
searchQ on exponentially growing sequences of values

of C and c, and picking the one with the minimum k-

fold cross validation error. The penalty parameter, C,

is part of the error term in the SVM and represents the

rate at which the SVM blearnsQ from the misclassifi-

cations. Varying the parameter, c, which is relevant

only for the sigmoid and the radial basis function

(RBF) kernels, helps in trying a range of different

kernel functions. For the model selection, we per-

formed a grid search with log C and log c taking

values in the range �25 through 25. As recommended

(Chang and Lin, 2002), we started with a coarse grid,

searching for the optimal values of log C and log c in

the range from �25 through 25 with a step size of 5,

after which the step size was reduced to 1. A final

search was conducted with a step size of 0.25. The

pair of values of C and c with the highest average

cross-validation accuracies were selected and used to

train the whole training set and to generate the final

model.

KNN classifiers are memory-based, and do not

require optimizing any of the parameters. Given a

query point x0, the k training points xr, r =1,. . .,k,
closest in distance to x0 are used to classify using a

majority vote among the k neighbors (ties are broken

at random). Euclidean distance was used as a measure

of distance.

2.3. Design and implementation of the classifiers

Many implementations of SVMs are currently

available, including mySVM (Rüping, 2002),

svmTorch (Collobert and Bengio, 2001), SVMLight

(Joachims, 1999), Gist (Pavlidis et al., 2004), and

LibSVM (Chang and Lin, 2001). We used the

LibSVM package, available from http://www.csie.

ntu.edu.tw/~cjlin/libsvm (free for academic use). The
core optimization method in LibSVM is based on a

decomposition method (Joachims, 1999). Once the

SVM classifier is built, classification of unknown

test samples is efficient and rapid since the software

only calculates the inner products between the test

sample and a small subset of feature vectors known

as the support vectors. The multi-class classification

was implemented by the bone-against-oneQ approach
(Knerr et al., 1990) in which k(k�1)/2 pair-wise

classifiers (assuming a total of k classes) were con-

structed and each classifier was used to train sam-

ples from a pair of classes. A voting strategy was

used, in which each pair-wise classification gave a

vote to the winning class. The final classification

was the class with the maximum number of votes.

Ties were broken by picking the class with the

smaller index (Hsu and Lin, 2002). The KNN clas-

sifier was implemented using the Java programming

language.

2.4. Evaluating the accuracy of the classifiers

For the testing phase, the prediction performance

was evaluated using the jackknife test (Efron and

Tibshirani, 1993); each sample (including all its repli-

cates) was singled out in turn as test samples, and the

remaining samples were used to train the classifiers.

All replicates of the sample were pooled together for

testing in order to avoid biasing the training set. All

tests and their outputs were run through an indepen-

dent bbatchQ program (written in Java) that invoked

the LibSVM software package. To evaluate the pre-

dictive ability of the classifiers, the following mea-

sures were calculated: (a) the total prediction accuracy

(TPA), given by TPA ¼
Pk

i¼1 p ið Þ=N, (b) the predic-
tion accuracy (PA), given by PA(i)=p(i) / obs(i), and

(c) the Matthew’s Correlation Coefficient (MCC)

(Matthews, 1975), given by

MCC ið Þ

¼ p ið Þn ið Þ � u ið Þo ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þ þ u ið Þð Þ p ið Þ þ o ið Þð Þ n ið Þ þ u ið Þð Þ n ið Þ þ o ið Þð Þ

p :

Here, N is the total number of amplicons; k is the

number of classes; obs(i) is the number of amplicons

observed in location i; p(i) is the number of correctly

predicted samples of class i; n(i) is the number of

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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correctly predicted samples not of class location i; u(i)

is the number of false negatives; and o(i) is the

number of false positives.

The accuracy value is a measure of the number of

correct classifications. The value PA(i) measures the

accuracy for a specific class i, while TPA measures the

quantity for all the classes and is therefore a measure of

the accuracy of the classification for the whole data set.

Note that PA(i) will be 100% if all the samples in set i

are correctly classified. However, the MCC value for

that set could be less than the optimal value of 1.0 even

if the accuracy is 100%. The MCC value also takes

into account samples from outside this set that are

misclassified as belonging to this set, and is, therefore,

a rough measure of selectivity.
3. Results

3.1. Prediction accuracy for the Idaho soil samples

The prediction accuracies and MCC values were

calculated for Idaho top and deep soil samples (Table

1). The total accuracy for the top soil samples using an
Table 1

Prediction accuracies and MCC values for Idaho top (A) and deep (B) s

Machines (SVM) classifiers using amplicon length heterogeneity (ALH) p

and V9)

Location Number of

samples

KNN SVM Classifiers

Linear kernel

Accuracy (%) M

A: Idaho top soils

NSB 6 100 100 1

CT 7 100 100 0

IP 8 100 100 1

MP 9 88.89 88.89 0

Overall accuracy 30 96.67 96.67

B: Idaho deep soils

NSB 9 88.89 77.77 0

CT 9 100 88.89 0

IP 8 100 100 0

MP 9 100 88.89 0

Overall accuracy 35 97.14 88.57

The KNN classifier was implemented with k =1. For the SVM classifier,

radial basis function (RBF) kernel with parameter c, and a sigmoid kernel

from Idaho represented the following four soil management types: pristine

(IP) and moldboard plough (MP).
SVM classifier was 96.67% (Table 1A) even with the

simplest linear kernel function. The accuracy was kept

constant when applying the more complex non-linear

kernel function. The total accuracy for the deep soil

samples was 88.57% (Table 1B). One sample point

from the MP data set was consistently misclassified as

a CT sample, suggesting that it may be an outlier. The

misclassifications with the deep soil data were not

consistent in any manner (one NSB sample classified

as CT, one CT sample classified as IP, and one MP

sample classified as CT). With more misclassifica-

tions, prediction accuracies were lower for deep soil

samples, suggesting that deep soil samples were less

distinguishable than the top soil samples.

Although the accuracy and MCC values for each

classifier were strongly correlated, they were not

identical. For example, an accuracy of 88.89% for

MP (Table 1A) indicates that one out of the nine MP

samples was misclassified as belonging to some

other class. For CT samples tested with an SVM

classifier using a linear kernel (Table 1A), the accu-

racy was 100%, while the MCC value was 0.91,

implying that while all the CT samples were correct-

ly classified, some other sample was incorrectly
oils with K-Nearest Neighbor Method (KNN) and Support Vector

rofiles from four 16S rRNA hypervariable regions (V1, V1+V2, V3

RBF kernel Sigmoid kernel

CC Accuracy (%) MCC Accuracy (%) MCC

.00 100 1.00 100 1.00

.91 100 0.91 100 0.91

.00 100 1.00 100 1.00

.92 88.89 0.92 88.89 0.92

96.67 96.67

.85 77.77 0.85 77.77 0.85

.78 88.89 0.78 88.89 0.78

.92 100 0.92 100 0.92

.85 88.89 0.85 88.89 0.85

88.57 88.57

three different kernel functions, the linear function when d =1, the

were tested. See Materials and methods for details. The soil samples

natural sagebrush (NSB), conservation tillage (CT), irrigated pasture
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labeled as CT (in this case, one of the MP samples).

The errors in the classification are small, yet non-

trivial. An improved analysis that achieves 100%

accuracy for the SVM classifiers for the same data

set is presented below. The KNN classifiers outper-

formed the SVM classifiers for the deep soil sam-

ples, while they were evenly matched for the top soil

samples.

3.2. Prediction accuracies for Chesapeake Bay

samples

The procedure described above for the Idaho soil

samples was independently applied to the Chesapeake

Bay samples with the location-based and time-based

labels (Table 2). The performance of the classifiers for

the Chesapeake Bay data was clearly inferior to that

for the Idaho samples. The average accuracy was only

about 83%, with the accuracy for the individual clas-

ses ranging from 55% to 100% (Table 2). The MCC
Table 2

Prediction accuracies and MCC values for location-based and time-based

classifiers using amplicon length heterogeneity (ALH) profiles from a sin

Sample labels

Samples from different locations CP

CS

HD

HI

HW

OC

OM

RB

UP

Overall accuracy (location)

Samples from different times of year Sep 99

Dec 99

Feb 00

Mar 00

May 00

July 00

Nov 00

Overall accuracy (time)

The KNN classifiers were implemented with k =1. For the SVM classifier,

selection, parameters log2C =9 and log2c =2.15 were used for the location

time experiments. The soil samples from Chesapeake Bay represented the

Island Dry, HI=Hog Island Intermediate, HW=Hog Island Wet, OC=Oyste

Phillips Creek.
values ranged from 0.62 to 0.91. The performance of

the SVM and KNN classifiers were comparable.

3.3. Optimization of the SVM classifier for Chesapeake

Bay samples using model selection

Performance by the SVM classifier on the Chesa-

peake Bay sediments was less than satisfactory, re-

quiring further optimization. Optimization of the

SVM classifier was done using model selection for

the various kernel function parameters and the pen-

alty parameters (Chang and Lin, 2002). The penalty

parameter, C, is part of the error term in the SVM

that represents the rate at which the SVM blearnsQ
from the misclassifications. A range of different ker-

nel functions for the sigmoid and the RBF kernels

can be explored by varying the parameter c. Model

selection suggested the use of a SVM classifier using

a RBF kernel function with log2C =9 and log2c =2.15
for Chesapeake Bay location-based classification, and
classifications of Chesapeake Bay samples with KNN and SVM

gle 16S rRNA hypervariable region (V1+V2)

Number of samples KNN SVM with RBF kernel

Accuracy (%) MCC

23 86.95 91.30 0.85

60 90.00 91.67 0.85

52 84.62 90.38 0.86

38 76.31 84.21 0.82

42 83.33 83.33 0.80

23 82.60 78.26 0.76

9 55.56 55.56 0.62

30 70.00 76.67 0.84

5 60.00 60.00 0.77

282 81.56 84.75

76 85.52 88.16 0.82

58 79.31 75.86 0.68

50 80.00 80.00 0.81

33 78.78 81.82 0.78

15 86.66 80.00 0.89

15 100.00 100.00 0.91

35 85.71 80.00 0.77

282 83.33 82.62

only the radial basis function (RBF) kernel was used. After model

experiments, while log2C =7.25 and log2c =0.75 were used for the

following locations: CP=Chimney Pole, CS=Cattle Shed, HD=Hog

r Creek Bank, OM=Oyster Creek Marsh, RB=Red Bank, UP=Upper
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with log2C =7.25 and log2c=0.75 for Chesapeake

Bay time-based classification.

The overall accuracy (after optimization) for the

location-based samples was 84.75%. The 49 misclas-

sifications did not appear to have any perceivable

pattern to them. This would suggest that the eubacter-

ial community patterns in the Chesapeake Bay sedi-

ments are spatially similar at the resolution of the

ALH profile. Alternatively, the fact that we had only

one hypervariable region in the input may have made

it less distinguishable. We also tried alternative ways

to group the location-based samples—by dividing

them into three coastal habitats, high dry Spartina

marsh, low wet Spartina marsh, and adjacent mud

flats. However, this grouping did not significantly

change the performance of the classifiers (data not

shown), suggesting that the tidal flux in the system is

high enough to eliminate any distinguishing features

in the eubacterial communities.

The overall accuracy (after optimization) for the

grouped time-based samples was 82.62%, and was

therefore comparable to that of the location-based sam-

ples (84.75%). However, the misclassifications of the

time-based samples weremostly between adjacent time

periods. In fact, 40 out of the 51misclassifications were

to time labels that were within three months of the

correct label. This led us to question whether a more

accurate classifier could be built to distinguish samples

that were sufficiently far apart (seasonal differences) in

their time labels. For example, when we built classifiers

trained only with samples from July and December, the

resulting SVM classifier was accurate with 94.52% of

the test samples with those time labels. Similar results

were observed for samples from March and September

(90.83% accuracy), and from May and November

(92% accuracy).

3.4. Significance of 16S rRNA hypervariable regions

The poorer performance with the Chesapeake Bay

data, which interrogated only one hypervariable region,

raised several questions about the relative significance

of the ALH data from the different hypervariable

regions of 16S rRNA. Since ALH profiles from all

the four regions were available for the Idaho soil sam-

ples (Table 1), we sought to determine the combina-

tions of regions that would provide the most amount of

information in terms of the ability to distinguish soil
samples. This question was addressed by determining

the accuracy of the resulting classifiers when trained

with Idaho soil ALH profile data from every possible

combination of the four regions. Since the number of

regions for which ALH assays are done determines the

cost of the experiments, this analysis could also shed

light on the tradeoff between cost and accuracy.

The prediction accuracies were calculated when

data from different combinations of regions were

used to train both, a KNN classifier, and a SVM

classifier with RBF kernel function and a KNN clas-

sifier after optimized model selection (Tables 3–5).

When the profiles from only one region were utilized

to design classifiers (Table 3), the performance was

best when the V1+V2 region was used. For Idaho soil

samples, prediction accuracies were equally good

using the V1 regions, with the exception of the deep

soil samples, where the SVM classifier performance

on the V1+V2 region was marginally better than that

for V1 region. For both top and deep soils, the worst

results were obtained with the V9 region. The accura-

cies varied considerably with soil management types.

For example, the NSB soil samples were best distin-

guished by the SVM and KNN classifiers using the

profiles from the V1+V2 region, or by the KNN

classifier using the profiles from the V1 region. The

classifiers using the V9 region profiles were only

successful in distinguishing the CT and IP top soil

samples, and performed poorly otherwise. In fact, the

classifiers using profiles from only the V9 region had

an overall accuracy of about 80%. Interestingly, the

SVM classifiers using any of the four regions made no

misclassifications for the IP soil samples.

When two variable regions were used to design

classifiers (Table 4), using a combination of V1 and

V1+V2 regions improved the performance (for both

top and deep soil samples) over the classifiers using

only one of the regions. For Idaho top soil samples,

prediction accuracies were equally good with a com-

bination of V1 and V3 regions. The performance of

classifiers that included the V9 region was markedly

worse than when this region was excluded (Tables 3–

5). All other classifiers had reasonably high accura-

cies. When three variable regions (V1, V1+V2 and

V3) were used (Table 5), the performance was good

for all samples.

The data seems to imply that region V9 generated

data that tends to confound both the classifiers espe-



Table 3

Prediction accuracies for Idaho top (A) and deep (B) soil samples using KNN and SVM classifiers with the radial basis kernel function (with

model selection) using ALH profiles from single 16S rRNA hypervariable regions

Location Number of

samples

16S rRNA hypervariable region utilized

V1 V1+V2 V3 V9

KNN SVM KNN SVM KNN SVM KNN SVM

A: Idaho top soils

NSB 6 100.00 100.00 100.00 100.00 100.00 100.00 33.33 33.33

CT 7 85.71 85.71 85.71 85.71 85.71 85.71 100.00 100.00

IP 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MP 9 100.00 100.00 100.00 100.00 88.89 88.89 77.78 66.67

Overall accuracy 30 96.67 96.67 96.67 96.67 93.33 93.33 80.00 76.67

B: Idaho deep soils

NSB 9 100.00 88.89 100.00 100.00 88.89 77.78 77.78 66.67

CT 9 100.00 100.00 100.00 100.00 77.78 88.89 77.78 88.89

IP 8 100.00 100.00 100.00 100.00 87.50 100.00 75.00 100.00

MP 9 100.00 88.89 100.00 88.89 100.00 88.89 88.89 66.67

Overall accuracy 35 100.00 94.29 100.00 97.14 88.57 88.57 80.00 80.00

The soil samples from Idaho represented the following four soil management types: pristine natural sagebrush (NSB), conservation tillage (CT),

irrigated pasture (IP) and moldboard plough (MP). Sizes of the feature vectors for the four regions for the Idaho top soils were as follows: V1:

23; V1+V2: 31; V3: 11 and V9: 5. Sizes of the feature vectors for the four regions for the Idaho deep soils were as follows: V1: 24; V1+V2:

34; V3: 14 and V9: 7.
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cially when used by itself (Table 3) or in combination

with one of the other regions (Tables 4 and 5). How-

ever, when three regions were combined, the inclusion
Table 4

Prediction accuracies for Idaho top (A) and deep soil (B) samples using

profiles from combination of pairs of 16S rRNA hypervariable regions

Type Number

of

samples

16S rRNA hypervariable region utilized

[V1, V1+V2] [V1, V3] [V1, V

KNN SVM KNN SVM KNN

A: Idaho top soils

NSB 6 100.00 100.00 100.00 100.00 83.33

CT 7 85.71 100.00 100.00 100.00 100.00

IP 8 100.00 100.00 100.00 100.00 100.00

MP 9 100.00 100.00 100.00 100.00 100.00

Overall accuracy 30 96.67 100.00 100.00 100.00 96.67

B: Idaho deep soils

NSB 9 100.00 100.00 100.00 88.89 88.89

CT 9 100.00 100.00 100.00 100.00 88.89

IP 8 100.00 100.00 100.00 100.00 87.50

MP 9 100.00 100.00 100.00 88.89 88.89

Overall accuracy 35 100.00 100.00 100.00 94.29 88.57

The soil samples from Idaho represented the following four soil manageme

irrigated pasture (IP) and moldboard plough (MP). Sizes of the feature vec

23; V1+V2: 31; V3: 11 and V9: 5. Sizes of the feature vectors for the fou

34; V3: 14 and V9: 7.
of V9 region had no influence on the top soil samples

when combined with V1 and V1+V2 (Table 5). In-

terestingly, the worst performance of the classifiers
KNN and SVM classifiers with linear kernel function using ALH

9] [V1+V2, V3] [V1+V2, V9] [V3, V9]

SVM KNN SVM KNN SVM KNN SVM

100.00 100.00 100.00 83.33 100.00 83.33 83.33

85.71 85.71 85.71 100.00 100.00 100.00 85.71

100.00 100.00 100.00 100.00 100.00 100.00 100.00

88.89 88.89 88.89 100.00 66.67 88.89 66.67

93.33 93.33 93.33 96.67 90.00 93.33 83.33

88.89 100.00 88.89 77.78 100.00 77.78 66.67

100.00 100.00 100.00 88.89 88.89 77.78 88.89

100.00 100.00 100.00 100.00 100.00 87.50 87.50

88.89 100.00 100.00 88.89 88.89 88.89 88.89

94.29 100.00 97.14 88.57 94.29 82.86 82.86

nt types: pristine natural sagebrush (NSB), conservation tillage (CT),

tors for the four regions for the Idaho top soils were as follows: V1:

r regions for the Idaho deep soils were as follows: V1: 24; V1+V2:



Table 5

Prediction accuracies for Idaho top (A) and deep soil (B) samples using KNN and SVM classifiers with linear kernel function using ALH

profiles from combination of triples of 16S rRNA hypervariable regions

Type Number of

samples

16S rRNA hypervariable region utilized

[V1, V1+V2, V3] [V1, V1+V2, V9] [V1+V2, V3, V9] [V1, V3, V9]

KNN SVM KNN SVM KNN SVM KNN SVM

A: Idaho top soils

NSB 6 100.00 100.00 100.00 100.00 83.33 100.00 83.33 100.00

CT 7 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

IP 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MP 9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Overall accuracy 30 100.00 100.00 100.00 100.00 96.67 100.00 96.67 100.00

B: Idaho deep soils

NSB 9 100.00 100.00 88.89 100.00 77.78 88.89 88.89 88.89

CT 9 100.00 100.00 77.79 100.00 88.89 100.00 100.00 100.00

IP 8 100.00 100.00 87.50 100.00 100.00 100.00 100.00 100.00

MP 9 100.00 100.00 88.89 100.00 88.89 100.00 88.89 88.89

Overall accuracy 35 100.00 100.00 85.71 100.00 88.57 97.14 94.29 94.29

The soil samples from Idaho represented the following four soil management types: pristine natural sagebrush (NSB), conservation tillage (CT),

irrigated pasture (IP) and moldboard plough (MP). Sizes of the feature vectors for the four regions for the Idaho top soils were as follows: V1:

23; V1+V2: 31; V3: 11 and V9: 5. Sizes of the feature vectors for the four regions for the Idaho deep soils were as follows: V1: 24; V1+V2:

34; V3: 14 and V9: 7.
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were observed when all four regions (Table 1) or

when single regions (Table 3) were used. The KNN

classifier performed better (96.69%) than the SVM

classifier (92.62%) when all four regions used. How-

ever, when a combination of three regions was used,

KNN performed relatively poorly with deep soil sam-

ples, especially when region V9 was included.
4. Discussion

4.1. Effective classification of ALH profiles using

computational tools

One attractive property of SVMs is that it con-

denses information in the training samples to provide

a sparse representation using a linear combination of a

small number of samples, referred to as the support

vectors, and only these vectors are used in the subse-

quent classification. The number of support vectors is

typically small compared to the total number of train-

ing samples. This makes the classification task very

efficient even when analyzing large datasets contain-

ing many uninformative data points. The training and

optimization phases for SVMs includes the selection

of an appropriate kernel function, selection of function
parameters and the regulation parameter, C. The func-

tion parameters implicitly define the structure of the

mapped feature space, while C controls the learning

rate, thereby affecting the training speed. The results

show that comparable accuracies were obtained with

different types of kernels (Table 1). Large variations

of the parameters including c for the RBF kernel had

little influence on the classification performance.

Both the classifiers (SVM and KNN) performed

well for Idaho soil samples. In particular, the SVMs

exhibited flawless performance for the Idaho soil

samples. Our results suggest that the top soil samples

are more clearly distinguishable than deep soil sam-

ples, confirming the conclusions of other researchers

(Griffiths et al., 2000). This is not surprising since the

surface soil would tend to be more heterogeneous due

to soil mixing from wind and/or rain erosion. Further-

more, the importation of new community members

from allochthonous sources would be more likely to

impact the top soil layers than the deeper ones.

Although there was no perceptible difference in

the performance of the SVM and KNN classifiers,

when we looked at the aggregation of all the results,

we found that the SVM classifier exhibited a mar-

ginally superior performance with an average overall

accuracy of about 92%, as compared to 91% for the



C. Yang et al. / Journal of Microbiological Methods 65 (2006) 49–62 59
KNN classifier. The standard deviation was also

smaller with the SVM classifier, suggesting a more

consistent performance than the KNN classifier.

However, note that the KNN tool can be implemen-

ted more easily than the more sophisticated SVM

tool.

It may be argued that the computational tools of the

type presented here assume that the majority of ALH

amplicons are common and detectable across a wide

range of samples of the same type. It is not clear if

such an assumption is justified. However, the strong

performance of these predictors on at least some of the

soil types (e.g., natural sage brush, or irrigated pas-

tures), even though the sampling was done at two or

three different locations, lends support to such a hy-

pothesis. Since both the SVM and the KNN classifiers

can easily deal with high dimensional data, it is

possible to extend the analyses to incorporate other

useful features that may improve the prediction accu-

racy (i.e., physical and chemical parameters of the

samples such as pH, salinity, temperature, mineral

and nutrient concentrations).

4.2. Analysis of Chesapeake Bay samples

The ALH profile data from the sediment samples

from Chesapeake Bay were only from the V1+V2

hypervariable region of the 16S rRNA gene. The

resulting classifiers did not perform as well as the

ones with the data from the Idaho soils, which had

ALH profiles from four hypervariable regions of the

16S rRNA gene. It is likely that ALH profiles from

only one hypervariable region (V1+V2) is not suffi-

cient for good classifications. Many other factors could

have contributed to the difficulty in classification. The

lower performance may be due to the imbalance in the

size of the data sets in the sense that the ratio of the size

of the largest class to the size of the smallest class is

60 /5=12 for the location-based labels and 76 /15=5

for the time-based labels. It may also be due to the fact

that the community patterns of the Chesapeake Bay

samples were less distinguishable from each other than

the corresponding Idaho samples. Since the Bay sam-

ples came from undisturbed and similar Spartina-dom-

inated marsh sediments compared to the range of plant

(native sagebrushes to crops like potatoes or alfalfa)

and management systems (pasture to moldboard plo-

wed) in the Idaho soil, it is not surprising that the
community patterns were similar between sites. Sedi-

ments tend to be saturated most of the time driving the

community structure to those members that can best

survive or adapt to fluctuating anoxic conditions. An-

other reason could be that a dense cover of Spartina

marsh grasses found at most of the sampling sites may

be driving the structure of the eubacterial communities

associated with the life cycle of the plants. In a related

study, Hines and coworkers showed that seasonal

changes in the biogeochemical parameters in Spartina

marsh sediments of New Hampshire were aligned to

the growth phases of the marsh grasses (Rooney-Varga

et al., 1997). While the relative abundance of the

sulfate-reducing bacterial community members fluctu-

ated over time, members of the Desulfobacteriaceae

were found throughout the year. The dynamics of the

marsh community appears to be driven by the growth

cycle and physiology of the Spartina rather than by

sediment temperature (Rooney-Varga et al., 1997).

Therefore, it is possible that the Chesapeake Bay

eubacterial communities were reflecting similar trends

toward structural homogeneity. Recent analyses from

the Gillevet laboratory of clone libraries from re-

presentative samples used in this study indicate sig-

nificant overlap in eubacterial communities in all

sample sites in their Chesapeake Bay study (personal

communications).

Several interesting observations are possible from

the analysis of the performance of the location-based

and time-based classifiers. Even though samples

obtained within a short span of time were not very

distinguishable, samples that were obtained about six

months apart were sufficiently distinguishable. Thus,

spatial differences across sites were not as pronounced

as temporal changes within a site, which could impact

how sampling of sediments should be performed for a

reliable study of changes in eubacterial diversity. This

suggests that some environmental factor other than

sediment saturation, tidal washing, or anoxia may be

driving the community structure. Temperature is un-

likely to be a factor since the overall sediment tem-

peratures did not fluctuate greatly. The driving force

could be the growth of the Spartina marsh grasses in

the summer and their death and decay in the winter.

The carbon and nutrient influx into this ecosystem is

largely due to the decay of the Spartina plants, which

may influence the resulting nutrient status, and sub-

sequently the eubacterial community composition.
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Since the Chesapeake Bay study was focused on

biodiversity within the microbial communities, no

environmental parameters were included in the anal-

yses (P. Gillevet, personal communication).

4.3. Which combinations of 16S rRNA hypervariable

regions are most informative?

The data suggests that a combination of profiles

from the different regions complement each other and

help to produce better classifiers for the whole com-

munity profiles (Tables 3–5). While it may seem intu-

itive that including more regions should improve the

accuracy, this was not always true. Our results suggest

that combining profiles from V1 and V1+V2 regions

gave the most accurate classifiers (100% for both top

and deep soils). Adding the profiles from region V3 to

those from V1 and V1+V2 also gave 100% accuracy

(Table 5), while adding the data from region V9 low-

ered the accuracy considerably (Table 1). We propose

that profiles from different regions may be useful in

different applications. For example, to identify the

location of a soil sample based on its ALH pattern,

the combined profiles from V1 and V1+V2 appear to

be sufficient. On the other hand, to understand the

eubacterial diversity of the whole community, the V3

region profiles should be included since they showed

high variations even within an ecosystem. It is not clear

whether the V9 region profiles provide any added value

to understand eubacterial diversity.
5. Conclusions

Microbial community profiling and their utiliza-

tion to distinguish patterning among microbial eco-

systems is a novel application for supervised learning

techniques such as SVMs and KNNs. Classification

tools based on these machine learning techniques

worked well for classifying or distinguishing soil

samples based on their ALH patterns. For best results

it seemed necessary to combine the profiles from

several hypervariable regions of 16S rRNA genes.

In particular, the profiles from region V1+V2 were

sufficient to distinguish between samples sampled at

different times of the year. However, they were

inadequate in distinguishing sediment communities

sampled at the same time but at different locations
in the Chesapeake Bay marshes. For the Idaho soil

samples, a combination of profiles from V1 and

V1+V2 regions provided the best results (100%

accuracy). Profiles from region V3 may be included

without any loss of accuracy. Including region V9

seemed to decrease the accuracy of the resulting

classifiers.

The fact that two different software tools were able

to learn from the data and successfully classify and

discriminate between length heterogeneity profiles of

new soil samples, indicates that there are hidden

patterns in these profiles that can be discerned by

these mathematical-based tools. This work paves the

way for other classification tools to be tried on similar

microbial ecology data. It is also anticipated that the

computational tools developed here will be useful for

large-scale and comparative analyses of ecogenomic

data. Potential applications also exist in forensic sci-

ence (Horswell et al., 2002) and environmental studies

(Litchfield and Gillevet, 2002; Mills et al., 2003;

Ritchie et al., 2000; Suzuki et al., 1998; Tiirola et

al., 2003). The field of microbial ecology could ben-

efit enormously by the development of classification

tools of the type described in this paper.
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